
 1 

 

S T U D Y  O F   

B M E  T E C H N O L O G Y  

 

Augmented Telepresence Robot using Raspberry Pi 

 

 

by 

Alyssa Png Kai Wen (S10192905)  

Yap Shi Ting, Esther (S10194943) 

Diploma in Biomedical Engineering 

 

06 September – 24 January 2022 

A minor thesis submitted in fulfilment for the diploma in Biomedical Engineering 

 

 

Department of Biomedical Engineering 

Ngee Ann Polytechnic 

Singapore 



2 

 ABSTRACT  

This report summarizes the study of Augmented Telepresence Robot using Raspberry Pi, as 

well as the various usage of Amazon Web Services (AWS).  

The aim of this project is to incorporate Augmented Reality to telepresence technology in 

hopes to provide users with a better sense of immersion in the simulated world using an 

EPSON BT-350 smart glasses. The movement and video captured on the Telepresence 

Robot can be remotely controlled by an authenticated user via a website.  

With the help of Vue.js and AWS Cognito, the layout and authentication of the Website was 

constructed using JavaScript. This website would be hosted onto the wide-area network 

using AWS S3 and CloudFront, allowing users from anywhere with internet to access their 

robots.  

In this report, the movement of the robot is stated to be controlled using specific messages 

send from the website to an AWS IoT Core MQTT topic via AWS API Gateway and 

Lambda. On the other hand, video and audio streaming from the robot was achieved using 

AWS Kinesis Video Streams with Real-Time Communication (WebRTC). To enhance the 

security of the streaming, AWS IoT Core credentials was used for this authentication.  

Further enhancements to the project were also proposed. Facial Recognition could be added 

to enhance the security of the robot using TensorFlow and AWS Rekognition on the front 

end. To achieve two-way communication between the robot and the user, it was suggested 

for audio to be send from the website and back to the robot using AWS KVS WebRTC. For 

better sustainability and scalability, Amazon DynamoDB could be used to help store all the 

robots’ data which could be retrieved and used on the website.  



3 

ACKNOWLEDGEMENTS  

Our experience working together under this project has been very eye-opening and 

rewarding. We would like to express our gratitude to Mr. Foo Wan Juang for organizing the 

Biomedical Project Design module. 

 

A special thank you to Mr Soon Hock Wei for his constant encouragement and guidance 

throughout these 22 weeks. Despite his busy schedule, he never fails to check up on our 

progress and takes the time to provide useful knowledge and resources to improve our 

projects. He has provided an environment for us to not be afraid to ask questions and learn 

many new things. We are very grateful for his willingness to work together with us to 

overcome all the challenges we have faced.  

 

We would also like to thank Mr Liu Wei Dong for all the help and guidance he has given us. 

His constant support and feedback during discussions have helped to catalyse the 

productivity of our team. He always goes out of his way to find and provide any resource or 

materials we may need for our project. When faced with challenges, he would always give 

us the much-needed encouragement and advice to continue working hard for our project.  

 



 4 

TABLE OF FIGURES  

FIGURE 1-1: WORK BREAKDOWN STRUCTURE 10 
FIGURE 1-2: GANTT CHART PART 1 10 
FIGURE 1-3: GANTT CHART PART 2 10 
FIGURE 1-4: R.A.C.I. TABLE 11 
FIGURE 2-1: RASPBERRY PI 4B+ 12 
FIGURE 2-2: FREENOVE 4WD SMART CAR KIT WITH RASPBERRY PI 12 
FIGURE 2-3: TRANSMISSION PARTS 13 
FIGURE 2-4: CAMERA MODULE AND FPC WIRE 13 
FIGURE 2-5: ULTRASOUND SENSOR 14 
FIGURE 2-6: ACRYLIC PIECES 14 
FIGURE 2-7: PCB BOARD 14 
FIGURE 2-8: 3.7V 18650 LITHIUM RECHARGEABLE BATTERIES 15 
FIGURE 2-9: RESPEAKER MIC ARRAY V2.0 15 
FIGURE 2-10 ADAFRUIT STEMMA SPEAKER 16 
FIGURE 2-11: JUMPER WIRE SOLDERED ONTO GROUND WIRE OF AUX CABLE 16 
FIGURE 2-12: SPEAKER ATTACHED TO THE ROBOT 17 
FIGURE 2-13: EPSON BT350 SMART GLASSES 17 
FIGURE 3-1: ARCHITECTURE DIAGRAM 19 
FIGURE 3-2: PROJECT COMPARISON 20 
FIGURE 4-1: URL AND ENDPOINT OUTPUT 23 
FIGURE 4-2: AWS IOT THING AND CERTIFICATE 24 
FIGURE 4-3: AUTHORIZER CREATED WITH CORRESPONDING COGNITO POOL 24 
FIGURE 4-4: AUTHORIZATION USING POST REQUEST 25 
FIGURE 4-5: INLINE POLICIES 25 
FIGURE 4-6: PERMISSIONS ADDED TO POLICIES 26 
FIGURE 4-7: REST API PRICES 28 
FIGURE 4-8: INVOICE FOR DECEMBER 29 
FIGURE 4-9: RPIROBOT AND RPIROBOT2 29 
FIGURE 5-1: MAIN.PY CODE TO EXTRACT DESIRE INFORMATION 30 
FIGURE 5-2: MAIN.PY CODE TO CONNECT RASPBERRY PI AS MQTT CLIENT 30 
FIGURE 5-3: IOT POLICY 31 
FIGURE 5-4: HANDLEMESSGAE() CODE 32 
FIGURE 5-5: RECEIVED MESSAGE STATEMENT 33 
FIGURE 5-6: MAIN.PY CODE TO IMPORT SERVO.PY AND MOTOR.PY 33 
FIGURE 5-7: HANDLEMESSAGE() CODE TO CONTROL SERVO 34 
FIGURE 5-8: SERVO.PY CODE 34 
FIGURE 5-9: HANDLEMESSAGE () CODE THAT CONTROLS MOTOR 35 
FIGURE 5-10: MOTOR.PY CODE 35 
FIGURE 5-11: PCA9685.PY CODE 36 
FIGURE 5-12: ROLE ALIAS POLICY 37 
FIGURE 5-13: CLOUDFORMATION TEMPLATE.YAML CODE FOR ROLE ALIAS 37 
FIGURE 5-14: AWS KVS VIEWER STATISTICS 38 
FIGURE 5-15: MAIN.PY RUNKINESISVIDEOSTREAM() 38 
FIGURE 5-16: CODE FOUND IN KVSWEBRTCCLIENTMASTERGSTREAMERSAMPLE 39 
FIGURE 5-17: ENOENT ERROR MESSAGE 40 
FIGURE 5-18: JUMPER WIRE SOLDERED ONTO BOARD 43 
FIGURE 6-1: USER POOLS CREATED IN AWS COGNITO 45 
FIGURE 6-2: AN EXAMPLE OF USER INFORMATION STORED IN DYNAMODB TABLE 46 
FIGURE 6-3: SIGN-IN PAGE 46 
FIGURE 6-4: “USERNAME CANNOT BE EMPTY!” ERROR MESSAGE 47 
FIGURE 6-5: "PASSWORD CANNOT BE EMPTY!" ERROR MESSAGE 47 



5 

FIGURE 6-6: "INVALID USERNAME/PASSWORD" ERROR MESSAGE 47 
FIGURE 6-7:SIGN-UP PAGE 48 
FIGURE 6-8: "USERNAME CANNOT BE EMPTY!" ERROR MESSAGE 49 
FIGURE 6-9: "ENTER EMAIL" ERROR MESSAGE 49 
FIGURE 6-10: "PASSWORD CANNOT BE EMPTY!" ERROR MESSAGE 49 
FIGURE 6-11: "SIGN UP ERROR" ERROR MESSAGE 50 
FIGURE 6-12: CONFIRM SIGN-UP PAGE 50 
FIGURE 6-13: NEW USER POOL CREATED IN AWS COGNITO 51 
FIGURE 6-14: FORGOT PASSWORD PAGE 51 
FIGURE 6-15: CHANGE PASSWORD PAGE 52 
FIGURE 6-16: AFTER USER SIGN IN PAGE 52 
FIGURE 6-17: CONFIGURE AUTH IN MAIN.JS 53 
FIGURE 6-18: CONFIGURE ENDPOINTS IN MAIN.JS 53 
FIGURE 6-19: CREATE VUE INSTANCE IN MAIN.JS 54 
FIGURE 6-20: INDEX.HTML CODE 54 
FIGURE 6-21: APP.VUE CODE 55 
FIGURE 6-22: BEFORE USER SIGN IN 56 
FIGURE 6-23: AFTER USER SIGN IN 56 
FIGURE 6-24: AUTHENTICATION IN SIGNIN.VUE 57 
FIGURE 6-25: CATCH() FUNCTION FOR ERRORS 58 
FIGURE 6-26: LOADFACEBOOKSDK() METHOD 59 
FIGURE 6-27: WAITFORINIT() METHOD 59 
FIGURE 6-28: CODE TO SHOW RESPONSE AFTER USER ACCEPTS PERMISSIONS 60 
FIGURE 6-29: AUTHENTICATION FOR FACEBOOK 60 
FIGURE 6-30: BEFORE USER POOL CREATED 61 
FIGURE 6-31: AFTER USER POOL CREATED 61 
FIGURE 6-32: AUTHENTICATION IN SIGNUP.VUE (VERIFICATION CODE SENT TO USER) 62 
FIGURE 6-33: AUTHENTICATION IN SIGNUP.VUE (CONFIRM SIGN-UP) 62 
FIGURE 6-34: CATCH() FUNCTION FOR ERRORS 63 
FIGURE 6-35: AUTHENTICATION IN FORGOTPASSWORD.VUE 63 
FIGURE 6-36: AUTHENTICATION IN FORGOTPASSWORDVERIFICATION.VUE 64 
FIGURE 6-37: INTERFACE.VUE CODE 64 
FIGURE 6-38: LAMBDA FUNCTION FOR ROBOT MOVEMENT 65 
FIGURE 6-39: POSTDATA() METHOD CODE 65 
FIGURE 6-40: CREATE KVS CLIENT 66 
FIGURE 6-41: GET SIGNALING CHANNEL ENDPOINTS 66 
FIGURE 6-42: CREATE KVS SIGNALING CLIENT 67 
FIGURE 6-43: GET ICE SERVER CONFIGURATIONS 67 
FIGURE 6-44: CREATE RTCPEERCONNECTION 68 
FIGURE 6-45: CREATE WEBRTC SIGNALING CLIENT 68 
FIGURE 6-46: SIGNALING CLIENT EVENT LISTENERS (ABOVE 3 IMAGES) 69 
FIGURE 7-1: RECEIVEGSTREAMERAUDIOVIDEO() FUNCTION 74 

 

  



6 

TABLE OF ABBREVIATION  

 

  

Abbrevation  Explanation  

API Application Programming Interface 

AR Augmented Reality  

AWS Amazon Web Services 

CLI Command Line Interface 

CSS Cascading Style Sheets 

DOM Document Object Model 

HLS HTTP Live Streaming 

HTML Hypertext Markup Language 

HTTPS Hypertext Transfer Protocol Secure 

IAM Identity and Access Management 

ICE Interactive Connectivity Establishment 

IoT Internet of Things 

KVS Kinesis Video Stream 

MFA Multi-Factor Authorization 

MQTT MQ Telemetry Transport 

NAT Network Address Translation 

PWM Pulse Width Modulation 

SAM  Serverless Application Model 

SDK Software Development Kit 

SDP Session Description Protocol 

STUN Session Traversal Utilities for NAT 

TURN Traversal Using Relays around NAT 

VR Virtual Reality  

WebRTC WebRTC 

WSS Wavelength Selective Switch 



7 

 

TABLE OF CONTENT  

1. INTRODUCTION 9 

1.1. PROJECT STATEMENT 9 
1.1. PROJECT SCOPE 9 
1.2. RESPONSIBILITIES 9 
1.3. DIAGRAMS 10 
1.4. REQUIREMENTS 11 

2. PROJECT MATERIALS 12 

2.1. RASPBERRY PI 12 

2.2. FREENOVE 4WD SMART CAR KIT 12 
2.3. AUDIO DEVICES 15 
2.4. RESPEAKER MIC ARRAY V2.0 15 
2.5. ADAFRUIT STEMMA SPEAKER (3885) 16 

2.6. EPSON BT-350 SMART GLASSES 17 

3. TELEPRESENCE ROBOT 18 

3.1. AUGMENTATIVE REALITY 18 

3.2. DIFFERENCE BETWEEN AUGMENTATIVE REALITY AND VIRTUAL REALITY 18 
3.3. AMAZON WEB SERVICES (AWS) 19 

3.4. ARCHITECTURE DIAGRAM 19 
3.5. ENHANCEMENT 19 
3.6. SERVERLESS 20 

3.7. ADVANTAGE OF SERVERLESS 21 

4. DEPLOYMENT 22 

4.1. AUTHETICATION 24 
4.2. MOVEMENT 24 
4.3. STREAMING OF VIDEO 25 
4.4. STATIC HOSTING OF THE WEBSITE 26 

4.5. PRICING 26 
4.5.1. ALWAYS FREE 27 
4.5.2. 12-MONTHS FREE TIER 27 
4.5.2.1. API GATEWAY 27 
4.5.2.2. IOT CORE 28 

4.5.3. AWS KVS WEBRTC 28 
4.6. SCALABILITY 29 

5. ROBOT MECHANISM (BACK-END) 30 

5.1. MOVEMENT 31 
5.1.1. PYTHON CODE 32 
5.2. VIDEO STREAMING 36 
5.2.1. PYTHON CODE 38 

5.3. CHALLENGES 40 

6. WEBSITE (FRONT-END) 44 



8 

6.1. AWS AMPLIFY 44 

6.2. AWS COGNITO 45 
6.3. AMAZON DYNAMODB 45 
6.4. USER INTERFACE 46 
6.4.1. SIGN-IN PAGE 46 

6.4.2. SIGN-UP PAGE 48 
6.4.3. CONFIRM SIGN-UP PAGE 50 
6.4.4. FORGOT PASSWORD PAGE 51 
6.4.5. CHANGE PASSWORD PAGE 52 
6.4.6. AFTER USER SIGN IN PAGE 52 

6.5. VUE.JS CODE 53 
6.5.1. MAIN.JS 53 
6.5.2. INDEX.HTML 54 
6.5.3. APP.VUE 55 

6.5.4. SIGN-IN PAGE 56 
6.5.5. FACEBOOK SIGN-IN 58 
6.5.6. SIGN-UP PAGE 61 

6.5.7. FORGOT PASSWORD 63 
6.5.8. INTERFACE 64 
6.5.9. VIDEOVIEWER 66 
6.6. CHALLENGES 70 

7. REFLECTION 72 

7.1. ENHANCEMENT 73 

7.2. CONCLUSION 75 

8. BIBLIOGRAPHY 76 



 

9 

1. INTRODUCTION  

1.1. PROJECT STATEMENT  

Incorporate Augmented Reality (AR) into a telepresence robot (smart car and Raspberry Pi) 

by allowing remote access to its movement and camera on a website and smart glasses 

(EPSON BT350). 

1.1. PROJECT SCOPE 

The purpose of this project is to improve telepresence technology by incorporating AR to 

provide users with a better sense of immersion in the simulated world. This offers the user 

the impression of being present where the augmented telepresence robot is located. 

Objectives & deliverables of this project are: 

1. Produce a functional telepresence robot based on Raspberry Pi by applying 

knowledge about Python Language programming  

2. Program the Epson BT350 to receive the video stream from cloud resources, GUI 

design and robot movement control 

3. Allow remote access to the telepresence robot by using AWS cloud services 

1.2. RESPONSIBILITIES  

Project requirements will be divided between the front-end (Esther) and back-end 

(Alyssa). The front-end consists of the website development using Vue.js and 

implementing authentication via Amazon Web Services (AWS) Cognito. The back 

end consists of connecting the Raspberry Pi robots to AWS Internet of Things (IoT) 

core to enable user control movement and, to AWS Kinesis Video Stream (KVS) to 

stream live video captured. 



INTRODUCTION 

10 

 

Figure 1-1: Work Breakdown Structure 

1.3. DIAGRAMS 

 

Figure 1-2: Gantt Chart Part 1 

 

Figure 1-3: Gantt Chart Part 2 

 



INTRODUCTION 

11 

 

Figure 1-4: R.A.C.I. Table 

1.4. REQUIREMENTS  

The functional requirement for the project is to have a system that allows users to remotely 

control the robot. This includes the adjusting of its’ camera angle and to be able to drive the 

robot. The system must also enable streaming of the live video captured by the Raspberry 

Pi robot camera. By creating a website, the system is accessible on any computer, handphone 

as well as the user’s AR headset (Epson BT350).  

The technical requirements for the project are to operate the web-based system on Vue.js 

and provide authentication using AWS Cognito. The website system controls the robot 

remotely using AWS application programming interface (API) Gateway and Lambda and 

allows video streaming via AWS Kinesis Video Stream with the help of Web Real-Time 

Communication (WebRTC). The Epson BT350 smart glasses will connect to the robot by 

accessing the website. 



 

12 

2. PROJECT MATERIALS  

2.1. RASPBERRY PI  

 

Figure 2-1: Raspberry Pi 4B+ 

(Element14, n.d.) 

Raspberry Pi is an affordable, single board computer that connects to a monitor, and requires 

a keyboard and mouse. Raspberry Pi enables the exploration of computing and programming 

using languages such as Scratch and Python. For this project, the Raspberry Pi will serve as 

a microcontroller responsible for controlling the movement of the telepresence robot.   

2.2. FREENOVE 4WD SMART CAR KIT  

Freenove provides open-source electronic products and services worldwide. Their services 

include kits that promotes the learning of programming, robotics, and electronics as well as 

supplying various modules, components, and tools. Freenove kits are compatible with 

microprocessors such as Raspberry Pi and microcontrollers like Arduino. They help to 

cultivate creativity and innovation as their kits allow for design and customisation.  

 

Figure 2-2: Freenove 4WD Smart Car Kit with Raspberry Pi   
(Amazon, n.d.) 



 

13 

A Freenove 4WD Smart Car kit was used to serve as the telepresence robot and as seen in 

the figure above, the Raspberry Pi 4B+ will be attached to the car. 

 

Figure 2-3: Transmission Parts 
(Chen, Denzel, 2021) 

The transmission parts include two servos, four DC speed reduction motor and brackets and 

four driven wheels.  The two servos are responsible for controlling the angle of the camera. 

One servo is responsible for moving the camera left and right, while the other is to move it 

up and down. The motors were attached to the wheels and will control the direction at which 

the robot will move 

 

Figure 2-4: Camera module and FPC wire 
(Newegg, n.d.) 

The figure above shows the Camera module attached to the Raspberry Pi to capture live 

footage from robot’s perspective, The kit also includes an ultrasound sensor and a light 

tracking module as seen in the figure below,  



 

14 

 

Figure 2-5: Ultrasound Sensor 

 (Chen, Denzel, 2021) 

The servo, camera module, and the ultrasound sensor are all connected and supported in the 

desire position using the acrylic pieces shown below.  

 

Figure 2-6: Acrylic pieces 

All the different parts of the kit are placed together and attached to the PCB board shown in 

the Figure 2-7.  

 

Figure 2-7: PCB board 

 



 

15 

The robot requires two 3.7V 18650 lithium rechargeable batteries, shown in Figure 2-8, to 

operate. The batteries help to power up the Raspberry Pi and all the electrical components 

attached to the car. It allows the Raspberry Pi to work with having to be plugged in and 

therefore, allow the smart car to move about freely,  

 

Figure 2-8: 3.7V 18650 lithium rechargeable batteries 
 (Chen, Denzel, 2021) 

2.3. AUDIO DEVICES  

To bring telepresence to the next level, a speaker and mic was added to allow two-way audio 

communication between website and the robot.  

2.4. RESPEAKER MIC ARRAY V2.0  

 

Figure 2-9: Respeaker Mic Array v2.0  
(seeedstudio, n.d.) 

Using the USB port, the ReSpeaker Mic Array v2.0 is connected to the Raspberry pi board. 

It is a far-field microphone array device capable of detecting voices up to 5m away even 



 

16 

with the presence of background noise. Therefore, making it a good microphone to pick up 

the surrounding sound of the robot. (seeedstudio, n.d.) 

2.5. ADAFRUIT STEMMA SPEAKER (3885) 

 

Figure 2-10 Adafruit STEMMA speaker  

(adafruit, n.d.) 

Adafruit STEMMA Speaker with a Plug and Play Audio Amplifier was attached to the board 

to playback incoming audio from the client. It is small and compact making it ideal for the 

robot. The speaker consists of 3 connection pins, power, ground, and audio pins. The power 

pin was connected to PIN 17 of the Raspberry pi GPIO pins which supplies 3.3V.  

 

Figure 2-11: Jumper wire soldered onto ground wire of aux cable 

For the ground and audio pins, they were attached to the ground and audio left wire of an 

aux cable respectively. To do this, the aux cable was cut, and the rubber casing of the wire 

was removed to reveal the audio right, audio left and ground wires. A multi-meter was then 



 

17 

used to identify these wires. Once identified, a jumper wire with the female header pin on 

one end was soldered onto the ground and the audio Left wires each. Electrical tape was then 

used to ensure there was no exposed wires and the speaker was connected to the aux cable 

accordingly.  

 

Figure 2-12: Speaker attached to the robot 

2.6. EPSON BT-350 SMART GLASSES 

In hopes to enhance the customers experience, an Epson BT350 smart glasses was use. This 

will be done by inserting the hosted URL of the web application into the smart glasses. The 

smart glasses take AR to the next level by allowing the user to be fully immersed with the 

viewing content.   

 

Figure 2-13: Epson BT350 smart glasses  

(Epson, n.d.) 

 



 

18 

3. TELEPRESENCE ROBOT  

Telepresence robots allow the user to control the movement of the robot throughout space 

in the remote location, or even communicate with objects in the secondary location by 

utilizing the arms of a robot. Therefore, it allows users to interact with their surrounding and 

people without being physically there themselves. These robots can potentially help with the 

mobility and adaptability of videoconferencing. In the healthcare industry, telepresence 

robots are used to reduce the exposure to infectious disease and allow patients to connect 

with their families. As Covid-19 pandemic becomes a growing issue, the use of such robots 

has become more relevant and important as ever.  

3.1. AUGMENTATIVE REALITY  

Augmented Reality (AR) is an enhanced version of the real physical world. It allows user to 

view the real-life environment using technology that makes use of visual, auditory, or other 

sensory elements to enhance their experience. The prime goal of implementing AR is to 

accentuate specific features of the real physical world, increase the understanding of these 

features, and obtain smart and accessible perception that can be applied to the real-world 

context. (Adam, 2020) 

3.2. DIFFERENCE BETWEEN AUGMENTATIVE REALITY AND 

VIRTUAL REALITY  

The most distinct difference between Augmented Reality (AR) and Virtual Reality (VR) is 

that AR uses a real-world setting while VR uses a virtual world setting. AR allows users to 

control their presence in the physical world where they can feel more connected and present. 

VR completely removes the physical world element and replaces it with a world that is 

simulated and animated, hence users are controlled by a system in the virtual world. AR 



 

19 

applications are best suited for remote assistance, on-the-job training, and computer-assisted 

tasks while VR applications include virtual tours, or 3D video games. (Tulane University, 

n.d.) 

3.3. AMAZON WEB SERVICES (AWS) 

Amazon web services (AWS) will be implemented to enable remote access to the robot. 

AWS is a cloud platform that offers multiple services from data centres globally. These 

services cover a wide range of functions such as security, storage, and networking. (Gillis, 

2020) 

3.4. ARCHITECTURE DIAGRAM  

 

Figure 3-1: Architecture Diagram 

3.5. ENHANCEMENT  

Since this project was a continuation from last semester, some enhancements and changes 

in the approach was made. Firstly, the previous group made use of Flask Servers to 

communicate with the robot from the website. Therefore, the group had an additional task 

of managing these servers. This approach was replaced by a serverless approach which came 

with a lot of benefits. These benefits will be explored later in the report.  



 

20 

Current Project Previous Project 

Serverless Approach Server Approach 

Wide-area Network Local-area Network 

AWS KVS WebRTC (signalling channel) AWS KVS (video stream) 

Vue.js website Firebase website 

Figure 3-2: Project comparison 

The video streaming of the robot could only be done in a local area network suggesting that 

the website and the robot had to be connected to the same Wi-Fi to be able to stream the 

video. This was because the previous group uses a Firebase server which only allows local 

hosting. Therefore, the website could not be hosted onto AWS.  Furthermore, regarding the 

user authentication, Firebase authentication is powered under Google whereas AWS 

Amplify configured in Vue.js is powered under AWS. Therefore, by implementing third-

party resources compatible with AWS and AWS services, the hosting and video streaming 

could be done over the wide-area network.  

The current project made use of AWS KVS with WebRTC to stream the live video. Although 

it does not allow the ingesting of videos, WebRTC will allow for real time media 

communications directly between browser and devices. AWS WebRTC allows for a two-

way media streaming which suggest that it is possible for the Website to stream media back 

to the Raspberry Pi.  

3.6. SERVERLESS 

Serverless is a cloud computing execution model that involves operating applications 

without having to manage servers. This refers to having developers to only write a code 

while the behind-the-scenes infrastructure is managed by the cloud providers. These cloud 



 

21 

providers are responsible for the allocation and provisioning of servers. Therefore, 

developers can focus solely on the individual function specified in the application code. 

(Parlette, 2018) 

3.7. ADVANTAGE OF SERVERLESS  

First, no server management is necessary. Developers do not have to deal with the 

management of servers as these are done by the vendor, this creates more time for developers 

to create and expand their applications without being pressured about the server capacity. 

Secondly, developers are only charged for the server space they use, leading to a decrease in 

cost. Like ‘pay-as-you-go’ phone plan, code only runs when the backend functions are 

needed by the serverless application and scales up automatically when needed. Therefore, 

developers are only charged for what they use. Thirdly, serverless architectures offer greater 

scalability. As the user base grows, the serverless architecture will scale automatically. 

Fourthly, quick deployments and updates can be made. Developers can upload their code all 

at once as the application is a collection of functions provisioned by the vendor, therefore 

updates or patches can be made immediately without the need to make changes to the whole 

application. Lastly, serverless architecture reduces latency as the code can run closer to the 

end user. Since the application is not hosted on an origin server, the code can be run on any 

server that are close to the end user. Hence, requests from the user will be delivered faster, 

reducing latency. (cloudflare, n.d.)  

  



 

22 

4. DEPLOYMENT  

Following a blog post, the serverless backend was created and deployed using the GitHub 

AWS Serverless Application Model (SAM) source code provided and AWS Command Line 

Interface (CLI.) AWS SAM is an open-source framework use to build serverless application 

on AWS CloudFormation. AWS CloudFormation is an AWS service that provides 

developers to consolidate and build related AWS and third-party resources by treating 

infrastructure as code (Amazon Web Services, n.d.). The use of template files helps AWS 

CloudFormation to automate the setup of such resources making it easier and faster for 

developers to scale up. It allows for consistency when managing and configuring application 

and infrastructure as the same configuration can be used to deploy multiple copies of the 

stack. Therefore, it makes troubleshooting easier and helps minimise the error caused by 

configuring the resources manually.  

To deploy the application on AWS CLI, SAM CLI, Docker and Node.js was also needed. 

SAM CLI is an extension of AWS CLI that adds functionality for building and testing 

Lambda application. Docker is an open-source containerisation platform that allow 

developers to store applications into containers. Docker was responsible for running the 

functions in the Amazon Linux environment that matches Lambda.  



 

23 

 

Figure 4-1: URL and Endpoint output 

After deploying of the SAM template, a IoT get credential endpoint and API URL will be 

printed out. This API URL will be copied onto a config.json file in the Vue web application 

to invoke a Lambda function that will publish messages to the MQ Telemetry Transport 

(MQTT) Topic for the robot movement. Whereas, the endpoint will be copied onto a 

config,json file on the Raspberry Pi along with the IoT thing name, the IoT core endpoint, 

the role alias created for the AWS KVS and the AWS Default Region.  

 

Figure 4-2: config.json file 

An AWS IoT thing will also be created with the responding robot name, “Rpirobot”. For the 

robot to authenticate and connect with AWS IoT Core, an AWS IoT certificate was created. 

This in which produced a private key, certificate, and root certification authority (CA) which 

will be uploaded onto the Raspberry Pi. A root CA is the cornerstone authentication and 

security on the internet. 



 

24 

 

Figure 4-2: AWS IoT Thing and Certificate 

4.1. AUTHETICATION  

After the deployment of the new stack, several steps must be taken to ensure the security of 

the project. To achieve this, authentication was added for the movement and the streaming 

of the video.  

4.2. MOVEMENT 

To control the movement of the robot, API Gateway was used to create a REST endpoint to 

allow messages to be sent between the website and the robot as seen in Figure 3-1. Initially, 

anyone can send a request using the endpoint without authentication. Therefore, using the 

Cognito pool created in Figure 6-1, an Authorizer was created to limit access to the API 

Gateway.  

 

Figure 4-3: Authorizer created with corresponding Cognito pool  

 



 

25 

The authorizer created above was used to authorize both robots’ API Gateways as shown 

below. This will ensure that only authenticated users will be able to control the robot. 

 

Figure 4-4: Authorization using POST request 

4.3. STREAMING OF VIDEO 

When the stack was deployed, a role was created in AWS Identity and Access Management 

(IAM) which is used by Cognito to assume permissions for KVS to access the signalling 

channel. To ensure the user can only assume this role when they are authenticated, a Inline 

policy was created and attached to this role. As seen in the figure below, one policy was 

created for each robot and named “authRole” and “authrole2”.  

 

Figure 4-5: Inline Policies 

Once the policies have been added, the “authenticated” user from the identity pool will be 

able to acquire the role with the permissions shown in the figure below and access the desired 

signalling channel. The <RobotName> will be replaced with the corresponding name of the 

robots. Therefore, the streaming of video will be more secured.  



 

26 

 

Figure 4-6: Permissions added to Policies 

4.4. STATIC HOSTING OF THE WEBSITE 

To host the Vue.js web application online, “amplify add hosting” command is used to 

configure the application, allowing all the resources created in Vue.js to automatically be 

deployed using S3 and CloudFront. An S3 bucket is created once hosting is added, it is a 

simple storage service where data can be stored, retrieved, accessed, and backed up at any 

time. Amazon CloudFront enables web application to be delivered through a worldwide 

network of data centres, distributing all static and dynamic web content to users. (Amazon 

Web Services, n.d.) An “amplify publish” command is then used to build and publish all 

backend and frontend resources of the web application. Finally, the URL of the hosted web 

application will be provided. 

4.5. PRICING  

As the project made use of various AWS services, there is a cost behind consuming these 

services. However, this relatively affordable as AWS offers you a “pay-as-you-go” approach 

for pricing for over 160 cloud services. Therefore, only the individual services that are 

needed will be charged. AWS provides different types of free tier offers. This includes short 



 

27 

term “Free trails” tier, “12-month free” tier, and “Always free” tier (Amazon Web Services, 

n.d.).  

4.5.1. ALWAYS FREE 

The AWS services used in this project that falls under the “Always free” tier is AWS 

CloudFront where 1 Terabyte of date transferred out is free. AWS CloudFormation is also 

under the Always Free Tier which includes free 1,000 handler operations per month per 

account. Handler operations are to CREATE, UPDATE, DELETE, READ, or LIST actions 

on a resource. For one robot, 20 handler operations are utilised, thus, 1000 handler messages 

will be enough for 50 robots to be created in a month for free. AWS Lambda is also classified 

under this tier. This allows for 1 million Lambda request per month. Another service under 

this tier is AWS Cognito which provides a free tier of 50,000 monthly active users (Amazon 

Web Services, n.d.). 

4.5.2. 12-MONTHS FREE TIER  

This free tier offers free AWS services for 12-months following the initial sign-up date 

of the AWS account. 

4.5.2.1. API GATEWAY 

API Gateway is a service offered under this tier that include 1 million free API Calls to 

be received per month. However, after the 12-months, the REST API request per month will 

be charged as seen in the figure below. Therefore, the higher the number of Request, the 

lower the cost. (Amazon Web Services, n.d.)  



 

28 

 

Figure 4-7: REST API prices  

(Amazon Web Services, n.d.) 

4.5.2.2. IOT CORE 

Since the robots connect to AWS as IoT Core things, IoT Core services such as IoT 

message broker are being used. Under the 12-month Free Tier, 250 thousand messages can 

be delivered or published per month for free. Without this offer, AWS IoT core charges 

$1.00 per million messages and $0.08 per million minutes of connectivity.  (TrustRadius, 

n.d.) 

4.5.3. AWS KVS WEBRTC 

Currently, the video streaming is done using AWS Kinesis Video Stream Using WebRTC. 

AWS KVS WebRTC is not under any free tier and charges SGD $0.04 for the number of 

signalling channel that are active in each month. (Amazon Web Services, n.d.) If a device or 

application is connected to the signalling channel during any period of the month, the 

signalling channel is considered active. Since each robot uses one signalling channel, the 

cost of video streaming depends on the number of robot set-up. In this case, it would be a 

total of SGD $0.08, making this project relatively affordable to set-up and implement.  



 

29 

 

Figure 4-8: Invoice for December  

4.6. SCALABILITY 

In hopes to enhance the project, an additional robot was built. This will display the scalability 

and the improvement of security in the project. Using authentication, one user will only to 

be connected to their own robot.  One benefit of utilising AWS CloudFormation is that the 

same configuration can be used to deploy multiple copies of the same stack. Once the robot 

was set-up, a new stack, consisting of a different name, “Rpirobot2-app”, and a different IoT 

thing name, “Rpirobot2” was be deployed. This will output a different API Gateway URL 

from the URL printed out in figure 4-1. The certificate attached to this new robot will have 

different certificate.pem and private.pem.key files that are uploaded onto the new robot.  

 

Figure 4-9: Rpirobot and Rpirobot2 

  



 

30 

5. ROBOT MECHANISM (BACK-END)   

The main goal of the project was to allow the user to control the Raspberry Pi robot remotely 

via wide-area network. Therefore, AWS services were used to communicate between the 

user on the website and the Raspberry Pi.  

 

Figure 5-1: main.py code to extract desire information 

In the main.py, the information provided in the config.json file and the IoT certificate files 

will be retrieved using the commands above and will be used in the code accordingly. This 

information, which was unique to each robot, was used to configure the AWS MQTT client 

endpoint and credentials to authenticate the connection between the Raspberry Pi and AWS 

IoT Core. This connection was done using the “awsClient.connect()” command as shown in 

the figure below.  

 

Figure 5-2: main.py code to connect Raspberry Pi as MQTT Client 

 



 

31 

5.1. MOVEMENT  

One of the objectives of our project was to have the user be able to control the robots’ 

movements. This refers to adjusting of the robot’s camera angle which is controlled by the 

servo and driving the car in the desire direction which is controlled by the DC motor. Both 

robot parts are shown in Figure 2-3. 

 

Figure 5-3: IoT policy 

A IoT policy was created and attached to the created IoT thing, in this case was “Rpirobot”, 

to allow the robot to connect as an IoT thing and to subscribe to a specific MQTT topic, as 

shown in the figure above was “Rpirobot/action”. As shown in Figure 5-2, this subscription 

was done using the command “awsClient.subcribeAsync()”.  AWS IoT Core Message 

broker will be responsible for sending the messages published onto the topic to the robot to 

control its movement. According to the messages retrieved, the robot will move in the 

desired direction or camera angle.  



 

32 

5.1.1. PYTHON CODE  

On the robot end, the command “awsClient.onMessage = handleMessage” will retrieve the 

message on the MQTT topic using the listener “onMessage” method as seen in Figure 5-2. 

The message will be stored in the variable “message” which will be interpreted using the 

function “handleMessage ()”.  

 

Figure 5-4: handleMessgae() code 

The command “payload = json.loads(message.payload)”  is responsible for parsing the 

desire part of the transmitted data which is a JSON string and converting it into a Python 

dictionary. The command “payload['action']” was used to extract the value stored under the 

key called ‘action’ in the dictionary. The possible values received were named corresponding 

to the desired movement of the robot. For example, if the value obtained was “moveleft” the 

DC Motors will move the wheels to the left. Similarly, if the value was “lookright”, the servo 

will move the camera angle to the right. 



 

33 

 

Figure 5-5: Received Message statement 

As seen in Figure 5-5, when a message was received from the website via the REST API 

and AWS message broker, a “Received a new message” statement, which includes the 

message obtained and the topic name, was printed out. This aids with the confirmation of 

the correct message received and the troubleshooting if messages are not printed out. 

 

Figure 5-6: main.py code to import servo.py and motor.py 

To integrate the Freenove code control the robot according to the specified value obtained, 

it had to be analysed and understood. Both motor.py and servo.py code was first imported 

into the main.py to allow the DC motors and servo to run.  



 

34 

 

Figure 5-7: handleMessage() code to control servo 

For the servos, a for loop was used to allow the servo to gradually move over a range of 

angles. Within the loop, the “pwn.setServoPwm()” function, located in the servo, was called 

and used to position the desired servo at the angle determined by the variable “i”. The value 

of variable “i” will start from the first angle stated and gradually increase or decrease to the 

second angle stated in the loop conditions.  

 

Figure 5-8: servo.py code 

Within the “pwn.setServoPwm()” function, the channel number stated controlled which 

servo will move. Channel “1” is responsible for the servo that moves the camera up and 



 

35 

down while channel “0” is for the servo that moves the camera right and left. The 

“setServopulse()” function, located in the PCA9685.py, was then called. 

 

Figure 5-9: handleMessage () code that controls Motor 

For the DC motor programme, the “PWM.setMotorModel()” function, located in the 

motor.py, was called. Four different variables were also inputted, each controlling the DC 

motor for each wheel. This function called upon the “setMotorPwm()” function found in the 

PCA9685.py. 

 

Figure 5-10: motor.py code 

Both servo.py and motor.py require the use of PCA9685.py which contain codes that sets 

the Pulse Width Modulation (PWM). PCA9685 is a 16-channel I2C-bus controlled PWM 

controller with a fixed frequency. PWM is method that helps to minimise the average power 



 

36 

supplied by a electrical signal. PWM controlled the DC motor and servo using series of “ON-

OFF” pulses that vary depending on the variable “channel” inputted as seen in the “setPWM 

( )” function shown below. 

 

Figure 5-11: PCA9685.py code 

5.2. VIDEO STREAMING  

The other main requirement for the project to allow the user to view a live video streaming 

from the Raspberry Pi camera. This requirement was met using AWS KVS with WebRTC. 

WebRTC is an open-source project and specification that allow web applications to capture 

and stream audio or video media. 

To allow authentication with KVS using IoT credentials, a role alias policy was created and 

attached to the certificate of the IoT Thing.  



 

37 

 

Figure 5-12: Role alias policy 

 

Once attached, the IoT thing, the robot, will be able to assume the role as stated in the code 

below with the correct IoT certificate credentials. This role will allow access to the robot to 

connect and transmit the captured video using WebRTC and onto a signalling channel.  

 

Figure 5-13: Cloudformation template.yaml code for role alias 

Once the python code is run and the connection is authenticated, the video stream and viewer 

statistics can be view on the AWS KVS signalling channel console as shown in Figure 5-14. 



 

38 

For video streaming, H264 frames are send from the master (Raspberry pi) to the viewer with 

the frame rate of 30 frames per second (fps) which an ideal fps for live video streaming. It can 

handle basic motion and does not involve a significant amount of bandwidth (Milazzo, 2021). 

While, for audio streaming, Opus audio codec was utilised. 

 
Figure 5-14: AWS KVS Viewer statistics 

5.2.1. PYTHON CODE 

 

Figure 5-15: main.py runKinesisVideoStream() 

On the Raspberry Pi, a “wget” command was used to fetch and execute the installer script 

to download all the necessary files needed on the Raspberry Pi. This included 

“kvsWebrtcClientMasterGstSample” application which is sends sample H264/Opus frames 



 

39 

from a GStreamer pipeline and playback incoming audio via an autoaudiosink. Gstreamer 

is a open source multimedia tool used for building streaming pipelines. When constructing 

the command to initialise the build of the sample, the order and type of parameter will 

determine the media-type of the streaming as shown in the figure below.  Therefore, by 

adding ‘audio-video’ as the second parameter, both audio and video will be stream to the 

viewer(website).   

 

Figure 5-16: Code found in kvsWebRTCClientMasterGstreamerSample  

(github, n.d.) 

As mentioned earlier, a config.json file was created and uploaded into the Raspberry Pi. 

The environmental variables provided in the file along with the root CA path will be used 

to determine the value of the variable “environmentVars”. 

The subprocess was initiated using the command “subprocess.Popen(command, 

stdout=subprocess.PIPE, shell=True)”. This will spawn an intermediate shell process and 

tell it to run the command provided which included the environmental variables, the KVS 

application and the robot’s name. This command will initiate the creation of a signalling 

channel using the robot’s name and allow the robot to stream the video and audio captured 

onto it. 



 

40 

5.3. CHALLENGES  

The first challenge would be deploying the CloudFormation stack. As recommended by 

the blog post, a link was provided to deploy the stack using and already created template 

application on CloudFormation. However, this template could not be found in the AWS 

CloudFormation console. Therefore, the stack had to be deployed using AWS and SAM CLI, 

Node.js and Docker. When following the steps to build the application, an error with code 

“ENOENT” was encountered as seen in the figure below. This suggested that a 

“package.json” file could not be found. This file is required by Node.js to document the 

necessary package needed to build and run the application. Initially, it was thought that 

maybe the directory path to downloaded github source code was too long. However, after 

shortening it, the error was still occurring. After some research, it was discovered that the 

command “npm init” “npm init” can be used to initialise the project and the “package.json” 

file will be automatically created in the desired project directory. Once added, the application 

could be successfully built and deployed. 

 

Figure 5-17: ENOENT error message 

Once the signalling channel was created, the video captured by the robot should be 

displayed on the media playback card. However, this was not the case. A WebRTC peer to 

peer connection was not negotiated therefore the live video was not displayed. To gain a 



 

41 

better understanding to troubleshoot, a different blog post was used to create a video stream 

using AWS KVS producer Software Development Kit (SDK) for C++ instead of WebRTC.  

AWS KVS WebRTC is for real time communication and data cannot be ingested into the 

cloud for storage and processing. However, KVS with Producer SDK can ingest audio and 

video and throttles depending on the number fragments required instead of number of 

playback session (Christie, 2021). As the video was able to stream properly, it can be inferred 

that there was no error with the Raspberry Pi capturing video and streaming it onto AWS 

KVS. Therefore, this suggested that the issue could be caused by a technical error. After 

more research was done, it was discovered that the URL used for the IoT Credential Endpoint 

was wrong. This was due to the lack of understanding of the steps when following the 

instructions and carelessness. Once corrected, the video capture was displayed onto the 

signalling channel.  

When dealing with both hardware and software, challenges will arise that require 

troubleshooting and research skills. Firstly, after connecting the speaker, it could not be 

detected on the Raspberry pi board and “speaker-test” command did not work.  Initially 

thinking it was a connection issue, a multi-meter was used to ensure that power was being 

supplied to the speaker. As the test was successful, research was made online to source for 

potential solutions. Finally, a forum mentioning that the new Raspbian Operating System 

(OS) has various audio issues was discovered. Since there were two raspberry pi boards, the 

other board was checked, and it was discovered that the speaker was able to be detected and 

tested successfully on the other board. This meant that the OS of both boards were different. 

The “cat /etc/debian_version”, “cat /etc/os-release” and “uname -a” commands were ran to 

check the Debain, OS Release and Kernel Version of both boards. It was identified that the 

Debain and Kernel version on both boards were different. However, attempting to 



 

42 

downgrade the Kernel of the faulty board to the correct one failed. Therefore, a new SD card 

was used to download the correct OS and inserted into the robot. Fortunately, this solved the 

audio issue, and the speaker could be detected.  

Another hardware problem encountered was that the camera module was not being 

detected on one of the robots. When trying to run the command “raspistill -o image.jpg”, an 

“mmal: No data received from sensor. Check all connections, including the Sunny one on 

the camera board” error was shown. To narrow down the root cause of the error, the 

connection of the sunny connector was checked to ensure it was not loose. Next was to test 

if the camera was faulty by connecting to the other board. However, on the other board, the 

camera could capture an image. Another camera was attached to the faulty board, but the 

same error was received. The SD card was also exchanged with the other board but the 

command “raspistill -o image.jpg” was successful. Therefore, it could be concluded that it 

was not a software issue but that the camera connector on the board was faulty which could 

cause the connection between the FPC wire and the board to be loose.  

Finding a compatible microphone and speaker for the robot was not easy. Firstly, due to 

the design of the robot, it was hard to implement the usage of sound cards with build in 

speakers and microphone as they require all the GPIO pins. Therefore, the USB port and the 

audio jack on the raspberry p had to be utilised. Eventually, a blog post that uses a mini-USB 

microphone and a Adafruit STEMMA speaker (Figure 2-10) was found. (SneakyHacker, 

2020). However, after some testing, it was found out that the mini-USB microphone was not 

strong enough to pick up audio from 1m away.  This was not ideal especially if the robot 

was placed on the floor and had to pick up audio from the people standing up. Hence, 

research was done to find microphones that are more sensitive and utilises the USB port. 

The ReSpeaker Mic Array v2.0 was chosen to replace the Mini-USB microphone. 



 

43 

 

Figure 5-18: Jumper wire soldered onto board  

Finding the speaker and the microphone was one problem but another was how to 

connect the speaker to the board. Initially the audio output wire of the Adafruit STEMMA 

speaker (figure) connected to the left-pin of the audio jack port. To do this, a jumper wire, 

with the female header pin on one end was cut and soldered it onto the back of the raspberry 

pi. The audio pin of the speaker was then attached to this jumper wire. However, this wire 

could pose as a risk of short circuiting the board as there could be traces of exposed wire. 

These expose wire could accidentally touch the wires on the raspberry pi board, thus, 

spoiling the board and jeopardising the project. Therefore, it was decided to change this 

approach to the current one. Through this, the importance of being cautious while working 

with hardware and identifying the risk and possibilities before making connections was 

learnt. 

  



 

44 

6. WEBSITE (FRONT-END)  

In this project, the website will make use of the Vue.js Framework. Vue is a progressive 

JavaScript framework for building user interfaces and single-page applications, together 

with the knowledge of HTML and CSS. Compared to other frameworks such as React or 

Angular, Vue has the fastest learning curve to build web applications which is its trademark. 

Together with this framework, AWS services are implemented as well to allow user 

authentication. (Azam, 2021) 

6.1. AWS AMPLIFY 

AWS Amplify is a set of tools and services that makes it fast and easy to build and design a 

full-stack applications for web application developers. It consists of code libraries, ready-to-

use components, and built-in CLI which supports quickness and efficiency in building these 

web applications. Amplify has components for first, data storage. It keeps any app data 

synced to the cloud and manages the distributed data. Secondly, analytics. Amplify tracks 

the user sessions and is accountable to any behaviour that is made. It also enables any custom 

attributes and inspects conversion funnels. Thirdly, push notifications. Amplify manages the 

campaigns and send messages to users across multiple channels, including text or email. 

Lastly, authentication. Ready-to-use workflows are accessed for multi-factor authorization 

(MFA), sign-in, sign-up pages etc. One authentication service used together with AWS 

Amplify is Amazon Cognito which we will talk about at the next section. (Matador, 2020) 

 

 

 



 

45 

6.2. AWS COGNITO  

Amazon Cognito is a service that allows web developers to securely manage and synchronize 

the web application data for users. Unique identities or user pools are created for users 

through several public login providers such as Amazon, Google, or Facebook etc, it also 

supports unauthenticated guests. Furthermore, with Amazon Cognito, any data would be 

saved in the AWS cloud without the need to write any backend code, allowing the web 

developers to focus solely on creating web experiences instead of dwelling upon the backend 

solution to handle the management of identity, state, and storage. (Amazon Web Services, 

2014) 

 

Figure 6-1: User pools created in AWS Cognito 

6.3. AMAZON DYNAMODB  

Amazon DynamoDB is a NoSQL database service that allows an efficient and 

predictable performance with large scalability capabilities. It prevents the need to worry 

about hardware provisioning, setup and configuration, replication, or cluster scaling. 

DynamoDB allows users to create database tables that can store and retrieve any amount of 

data, serving any level of request traffic. (Amazon Web Services, n.d.) 



 

46 

 

Figure 6-2: An example of user information stored in DynamoDB table  

6.4. USER INTERFACE  

The home page of the website consists of the sign-in page. 

6.4.1. SIGN-IN PAGE 

 

Figure 6-3: Sign-in page 

If the user has no account, it can click to “Create one!” which will direct it to the Sign-up 

page. If the user already has an account but forgets its password, it can click to “Forgot 

password?” which will redirect it to the Forgot Password page. If the user wishes to sign in 

with a social provider, Facebook login is available for him/her to sign in as well. 



 

47 

 

Figure 6-4: “Username cannot be empty!” error message 

 

Figure 6-5: "Password cannot be empty!" error message 

 

Figure 6-6: "Invalid username/password" error message 



 

48 

To ensure the interface is user-friendly, error messages will be displayed to allow the user 

to know if he/she’s username or password has been inputted wrongly. Some examples of 

errors include, if the user did not input a username or password, “Username cannot be 

empty!” and “Password cannot be empty!” error messages will be displayed respectively. In 

addition, if the user enters an invalid username or password, “Invalid Username/Password” 

error message will be displayed. 

6.4.2. SIGN-UP PAGE 

 

Figure 6-7:Sign-Up page 

If a user has not created an account yet, it will create one in the Sign-up page where a valid 

username, email, and password must be entered.  



 

49 

 

Figure 6-8: "Username cannot be empty!" error message 

 

Figure 6-9: "Enter email" error message 

 

Figure 6-10: "Password cannot be empty!" error message 



 

50 

 

Figure 6-11: "Sign Up Error" error message 

Like the Sign-In page, error messages will be displayed to allow the user to know if he/she’s 

username or password has been inputted wrongly. Some examples of errors include, if the 

user did not input a username or password, “Username cannot be empty!” and “Password 

cannot be empty!” error messages will be displayed respectively. In addition, if the user 

enters an existing username or an invalid email, “Sign-Up Error!” error message will be 

displayed. 

6.4.3. CONFIRM SIGN-UP PAGE 

 

Figure 6-12: Confirm Sign-Up page 

 



 

51 

A verification code will be sent to the valid email and must be entered in the confirm Sign-

up page to verify the user. Once the submit button is clicked, it will direct the user back to 

the sign-in page to access its account.  

 

Figure 6-13: New user pool created in AWS Cognito 

In Amazon Cognito, the user pool will be updated. 

6.4.4. FORGOT PASSWORD PAGE 

 

Figure 6-14: Forgot Password page 

If a user forgets its password, it will click the “Forgot password” in the Sign-in page and it 

will direct it to the Forgot Password page where it prompts the user to enter its username. 



 

52 

6.4.5. CHANGE PASSWORD PAGE 

 

Figure 6-15: Change password page 

The user will be directed to the Change Password page where it must enter its username, 

verification code sent to the user as well as its new password. 

6.4.6. AFTER USER SIGN IN PAGE  

 

Figure 6-16: After user sign in page 

After the user sign-in successfully, a personalized message will be shown, and the user will 

be able to display its video stream and control the movement of the robot and camera via 

the buttons.  



 

53 

6.5. VUE.JS CODE 

6.5.1. MAIN.JS 

This main.js file is the entry point of the Vue application. 

 

Figure 6-17: Configure auth in Main.js 

 

Figure 6-18: Configure endpoints in Main.js 

As shown on the picture, all the import files are at the top of the code which includes files 

for Vue itself, the app, the router, the store, as well as Amplify. The “Amplify.configure()” 

function configures Amazon Cognito into the web application for user authentication as well 

as the Amazon API Gateway. API Gateway creates REST APIs that enables real-time 

communication applications, therefore an endpoint had to be stated to allow this 

communication to occur and data to be transmitted.  



 

54 

 

Figure 6-19: Create Vue instance in Main.js 

Next, a Vue instance is created which is required for all Vue application. It receives an option 

object that consists of information about the application, information includes the DOM 

element that supports the Vue instance as well as the data the instance will be using. 

6.5.2. INDEX.HTML 

The index.html file shown below is the standard index HTML file.  

 

Figure 6-20: Index.html code 

Focusing on <div id=”app”>, this div is where the Vue instance will be applied by the “#app” 

found in the main.js file, allow the homepage of the website to be shown. 

 

 

 

 



 

55 

6.5.3. APP.VUE 

This is the first Vue component that was created which was imported and rendered in the 

main.js file shown earlier. 

 

Figure 6-21: App.vue code 

This component allows routing to occur between the sign-in, sign-up, forgot password page 

which will be further discussed later. In almost all the components, <template> <script> 

<style> are used. <template> is a HTML-bind rendered DOM to the underlying Vue 

instances data, <script> contains all JavaScript codes consisting of the functions needed to 

run, and <style> is the CSS code used to apply a unique style to a particular HTML element. 



 

56 

6.5.4. SIGN-IN PAGE 

 

Figure 6-22: Before user sign in  

The code shown above is before a user sign into the website. It also consists of router-links 

that brings the user to the sign-up page or forgot password page when they wish to. 

 

Figure 6-23: After user sign in  

 



 

57 

Once the user is signed in, a personalized message will be displayed. <VideoViewer /> and 

<Interface /> are routed to display and allow the user to view their own video streams as 

well as to control the movement of the robot. 

 

Figure 6-24: Authentication in SignIn.vue  

To allow authentication for user to sign in, “Auth.signIn()” method is created where the 

username and password are necessary for authentication to take place. In the then function, 

when the user clicks on the sign in button, the user information will be passed into the 

“this.login, this.password” function to check if the information is correct. If it is correct, the 

user object will be returned and sign in will be successful. However, if it is incorrect, a catch 

function will catch the error and display it in the console.  



 

58 

 
Figure 6-25: catch() function for errors 

The above code shows how the error messages are displayed. A <div> element is created to 

declare the error variable and to display the red box, indicating an error. In the 

“Auth.SignIn()” method, a “catch ()” function is called for any errors occurred while signing 

in, and the if-else statements are used to check if the username or password is empty, and if 

an invalid username and password are inputted. 

6.5.5. FACEBOOK SIGN-IN 

To integrate and set up the Facebook Login into the Vue web application, “amplify update 

auth” command is used to configure Auth provider by choose “Default configuration with 

Social Provider (Federation)”. Then, a Facebook App must be created in the Facebook 

Developers Dashboard to receive the Facebook App ID and Secret. This is required when 

initializing the Facebook JavaScript SDK. Also, Facebook must be added in the Identity 

Pools as an authentication provider, the serverless backend API will then generate an Id once 

a user sign in. (Serverless Stack, n.d.) 



 

59 

 

Figure 6-26: loadFacebookSDK() method 

First, “loadFacebookSDK()” method is created to initialize the Facebook JavaScript SDK 

by inserting the Facebook App ID. (Serverless Stack, n.d.) 

 

Figure 6-27: waitForInit() method 

Second, “waitForInit()” method is created to wait for the Facebook JavaScript SDK to load. 

Once it is loaded, login with Facebook button will be enabled. (Serverless Stack, n.d.) 



 

60 

 

Figure 6-28: Code to show response after user accepts permissions 

When the user presses on the Facebookbutton, “handleClick ()” method will run to listen for 

the login status which will be changed in the “statusChangeCallback ()” method. While 

calling this method, “{scope: “public_profile_email”}” is configured to retrieve the user’s 

public profile and email address. (Serverless Stack, n.d.) 

 

Figure 6-29: Authentication for Facebook 

Once the user has given the permissions to login, “Auth.federatedSignIn()” method will be 

called to receive the user information retrieved from Facebook, allowing the user to be 

signed in securely. (Serverless Stack, n.d.) 

 



 

61 

6.5.6. SIGN-UP PAGE 

 

Figure 6-30: Before user pool created 

The code shown above is when a user pool is not created, the sign-up page will be displayed. 

It also consists of router-link that brings the user to the sign-in page if they already had 

created an account.  

 

Figure 6-31: After user pool created 

Once a user pool is created successfully, a verification code page will be displayed to ensure 

the email is under the correct user.  

 



 

62 

 

Figure 6-32: Authentication in SignUp.vue (Verification code sent to user) 

To allow authentication for user to sign up, “Auth.signUp()” method is created where the 

username and password are objects for authentication to take place. “this.login” is associated 

to username and “this.password” is associated to password, since email is also configured to 

receive the verification code to verify the user, therefore “this.email” will be associated to 

email under attributes. In the then function, user information is set in “this.user” to complete 

the sign up. If sign up is unsuccessful, the catch function will catch the error and display it 

in the console. 

 

Figure 6-33: Authentication in SignUp.vue (Confirm Sign-Up) 

Once the user inputs its details and sign up, a verification code will be sent to its email. 

“Auth.confirmSignUp()” method is created to prompt the user to enter its username and code 

for the sign-up procedure to be completed. If it is successful, a router push is enabled to 

return to the sign-in page. However, if it is unsuccessful, an error will be displayed in the 

console. 

 



 

63 

 

 

Figure 6-34: catch() function for errors 

The above code shows how the error messages are displayed. A <div> element is created to 

declare the error variable and to display the red box, indicating an error. In the 

“Auth.SignUp()” method, a “catch()” function is called for any errors occurred while signing 

up, and the if-else statements are used to check if the username, email, or password is empty, 

and if an existing username and an invalid email is inputted. 

6.5.7. FORGOT PASSWORD 

Regarding forgot password, two components are created to allow user to change its 

password.  

 

Figure 6-35: Authentication in ForgotPassword.vue  

ForgotPassword.vue component is created where “Auth.forgotPassword()” method is used. 

It passes the username of the user into the method, if it is successful, a router push directs 

the user to another page that allows is to enter its verification code and its new password. 



 

64 

 

Figure 6-36: Authentication in ForgotPasswordVerification.vue 

ForgotPasswordVerification.vue component is created where 

“Auth.ForgotPasswordVerification()” method is used. The username, code and new 

password entered is passed into this method and router push the user back to the sign-in 

page. If any error occurs, it will be catch and displayed in the console.  

6.5.8. INTERFACE 

 

Figure 6-37: Interface.vue code 

Interface.vue component is created to manage the buttons for the user to control the 

movement of the robot and the camera. “postData()” function is declared to post the desired 

direction of either the robot or the camera via the API Gateway to the MQTT topic and 

publishes the desired direction into the website for movement to occur. “API.post()” 

functions allows the apiName, path, and myInit variables to pass through this function and 

sends a data to the API server. 



 

65 

 

 

Figure 6-38: Lambda function for robot movement 

The above figure is coded into a Lambda function that stores the robot’s name and the action 

under the variable “publishTopic”. This variable is then used to determine and allow the 

lambda function to publish the desired MQTT topic with the message send via the API 

Gateway.  

 

Figure 6-39: postData() method code 

The above code is an example on how to “postData()” function is applied as a method for 

movement of the robot to occur. ‘forward’, ‘backwards’, ‘moveleft’, moveright’ are names 

passed into the function to post the desired direction.  

 

 



 

66 

6.5.9. VIDEOVIEWER 

VideoViewer.vue component is created to allow user to live stream its videos. 

 

Figure 6-40: Create KVS Client 

First, kinesisVideoClient (KVS Client) is created. This client uses libraries and SDK to 

securely connect the Kinesis Video Streams and other media data to the web application for 

users to view. Therefore, it receives data from the servo and manages them, as well as the 

stream lifecycle to the Kinesis Video Streams as the data flows. 

 

 

Figure 6-41: Get Signaling Channel Endpoints 

Secondly, Signaling Channel Endpoints are obtained by declaring 

“getSignalingChannelEndpointResponse” variable. These variable issues an endpoint for the 

signaling channel to send and receive messages. From the code above, the signaling channel 

is assigned a HTTPS protocol, where this API creates a secure websocket endpoint, and a 

WSS protocol, where this API creates an HTTPS endpoint, to connect to for data requests to 

be processed. Role determines the messaging permissions. As ‘VIEWER’ role is assigned, 

this API produces an endpoint where peer communication can only be made with a 

‘MASTER’ by a client. (Amazon Web Services, 2021) 

 



 

67 

 

Figure 6-42: Create KVS Signaling Client 

Thirdly, KVS Signaling Client is created. The HTTPS endpoint that was derived by the 

“getSignalingChannelResponse” variable is used with the KVS Client to produce ICE 

servers. ICE servers are also known an Interactive Connectivity Establishment Servers. 

(Amazon Web Services, 2021) 

 

Figure 6-43: Get ICE server configurations 

Fourthly, ICE server configurations are obtained. The information consists of the URLs, 

username, and credentials which are used to configure the WebRTC connection. 

Furthermore, the code above collects both the STUN and TURN server configurations where 

“getIceServerConfig ()” API is used to get the TURN server. To allow peer-to-peer 

communication between the website and the robot to obtain the live video, they must 

exchange SDP which consists of a list of ICE candidates which are the IP and port pairs 

present to allow these exchanges to occur, connectivity checks are then checked to allow 

media to flow between these two applications.  ICE candidates are built by making a chain 

of requests to a STUN server, this server returns the public IP address and port pair that 

originated the request and adds each pair to the list of ICE candidates, gathering all ICE 



 

68 

candidates which will then return an SDP, allowing communication to occur. (Amazon, 

2021) 

 

Figure 6-44: Create RTCPeerConnection 

Fifthly, RTCPeerConnection is created as it is the primary interface for WebRTC 

communications in the web application. (Amazon Web Services, 2021) 

 

Figure 6-45: Create WebRTC Signaling Client 

Sixthly, WebRTC Signaling Client is created. This client is used to send messages over the 

signaling channel where it contains information such as channelARN, ‘VIEWER’ role, 

region, and credentials etc. (Amazon Web Services, 2021) 

 

 

 

 

 

 

 

 



 

69 

 

 

Figure 6-46: Signaling Client Event Listeners (Above 3 images) 

Lastly, Signaling Client Event Listeners are added which waits for an event to occur before 

carrying out a certain action. 

 

 

 

 

 

 



 

70 

6.6. CHALLENGES   

The first challenge was understanding the JavaScript code. With a lack of knowledge of 

this coding language, many confusions were made. Therefore, countless research and 

understanding must be made to truly understand the flow of codes. Also, while writing the 

codes and troubleshooting errors, it made apprehension of the codes significantly better. 

Secondly, as the project was referenced by a blog post, it uses the ready-made authenticator 

component which consists of the sign-in, sign-up page etc. By attempting to replace these 

components with self-customized front-end codes, it was difficult and time consuming as 

minor mistakes can cause the web application to not work. Therefore, individual parts of the 

code must be transferred slowly and diligently instead of transferring the whole code 

directly.  In addition of troubleshooting and finding the cause of the errors, the authentication 

of the web application was created successfully. Thirdly, implementing Facebook Login was 

a problem at one point of time as well. One learning point about programming is the need to 

be extremely precise and cautious to prevent any errors from occurring, errors such as 

“JSSDK Unknown Host Domain” occurred as “Login with the JavaScript SDK” in the 

Developers for Facebook Dashboard settings was not enabled, it thus led to another error 

“Can’t load URL: The domain of this URL isn’t included in the app’s domain” as incorrect 

URL was inputted for the domains that are allowed for the JavaScript SDK. The URL should 

be the hosted URL provided after “amplify publish” command was called rather than the 

localhost URL. Lastly, the idea of implementing scalability in the project was the most 

challenging. To allow writing and reading of data to and from a table, DynamoDB was 

utilized which is one of the AWS Services. Countless of research and knowledge on how the 

data information is stored and retrieved must be made. Furthermore, the importance of 

understanding how to integrate the code into the Vue.js application is vital as well. Many 

problems arose when trying to query the DynamoDB table. First, AWS credentials were not 



 

71 

returned when calling the function “getItem()”, resulting in the inability for the querying of 

data information from the DynamoDB table. As multiple ways of coding were integrated, 

various errors popped out such as “CognitoSocialIdentityProvider” is not a provider. 

Cognito SDK and its webpack were also installed into the application, however none could 

solve the problem. Secondly, in the VideoViewer.vue component, “config” variable was 

declared by importing the config.JSON file, and since the endpoints and channelARN for 

the first robot was stored, the endpoints and channelARN will always be the same despite 

whichever username is inputted. Thus, another approach was made by duplicating the 

Interface.vue and VideoViewer.vue components for each of the robot, as well as using the 

<v-if> and <v-else> to check which user is inputted, which will eventually display the 

endpoint and channelARN for the unique user. 



 

72 

7. REFLECTION  

Through this project, we have learnt the importance of being independent learners. With 

little to no knowledge on AWS services, JavaScript programming and other necessary skills 

required for this project, there is a need to better equip ourselves for it. As we explore the 

various tools and websites available, we gradually adopt useful research skills. These skills 

have taught us how to look to the internet for solutions, when faced with challenges. To plan, 

create and improve our project, we need to have sufficient knowledge on the resources we 

will be using. Using platforms such as LinkedIn, we developed a better understanding of 

how and what are the ideal resources to use to achieve the objectives of this project. By 

referencing from projects done by other developers, we can piece together ideas and 

implement them to our project. We soon realise that our accomplishments would only be 

limited by our willingness to learn.  

As we work towards the objectives of this project, we are bound to meet challenges and 

obstacles. Therefore, having resilience through this process is important. Without this never 

say die attitude, we will never be able to overcome and learn from such challenges. Although 

the learning curve is steep and time-consuming, we learnt to look at minor achievements as 

motivation and constantly encourage each other as we go. The biggest motivation was the 

thought that this project might be implemented to help improve the quality of life for patients 

in the healthcare industry one day.  

Facing such challenges has allowed us to develop useful troubleshooting and research 

skills. Troubleshooting skills such as integrating “console.log ()” commands to check if the 

code is successful or not, or using a multi-meter to test the components, we have learnt the 

various ways to look out for when working with software and hardware. Though the internet 



 

73 

can provide us with countless solutions, but finding the right solution is a skill itself. By 

looking through forums and blog posts, we were able to understand the types of key words 

to look out for or the search.  

Working with each other has taught us to stay open minded and respect each other 

opinions and ideas. These values are needed to create an environment where effective 

communication can thrive. As we may have different views and perspectives, listening to 

each other was vital to ensure that both voices could be heard. We learnt that we had to 

compromise with each other to find the best and most ideal way to improve our project. 

When solving problems we face, two brains will always be better than one. Teamwork also 

involves taking responsibility of our tasks by completing it on time. Setting datelines will 

allow us to plan our time wisely and progress together as a team.  

7.1. ENHANCEMENT 

The first enhancement is to implement facial analysis to the video stream using AWS 

Rekognition. AWS Rekognition is an AWS service that allows developers to add image and 

video analysis to their applications. For facial search, AWS Rekognition can search images, 

stored videos, and streaming videos to check if any faces match those stored in a container 

also referred to as a face collection (Amazon Web Service , n.d.). To enable facial search, 

many developers implemented AWS Rekognition stream processor onto AWS KVS.  

However, while trying this approach, it was discovered that this AWS Rekognition object 

was not supported in the ap-southeast-1 (Singapore) region. Therefore, another approach 

was to capture a picture and store it in a local directory on the Raspberry Pi. AWS 

Rekognition will work directly with the Raspberry Pi and the images captured in the 

directory. Unfortunately, although this worked, was realised that there was no way of 

streaming the live video footage onto AWS KVS and capturing the picture at the same time. 



 

74 

Therefore, more research was done on third-party software like OpenCV and Tensorflow. 

However, it was discovered that OpenCV does not support with WebRTC (zakaziko, 2020). 

This is because OpenCV requires a HTTP Live Streaming (HLS) URL to retrieve the video 

frames from the KVS video stream that will be used for the facial recognition, but the project 

uses WebRTC which is different from HLS. If given more time, implementation of other 

platforms like Tensorflow could be used on the front end to obtain the video frames and 

capture a process them using AWS Recognition (developer.mozilla.org, 2021). 

 

Figure 7-1: receiveGstreamerAudioVideo() function 

(Github, 2021) 

Currently, audio can only be transmitted from the robot to the website. Therefore, one 

further enhancement would be to stream audio from the client accessing the website to the 

Raspberry Pi, allowing audio to be played on the speaker attached to it. This can be done 

using the “receiveGstreamerAudioVideo()” function found in the 

“kvsWebRTCClientMasterGstreamer” sample. This function will allow the master 



 

75 

(Raspberry Pi) to receive audio from the viewer (website). On the website end, once the 

peer-to-peer connection is open, signalling client event listeners must be added. This will 

connect the default audio input of the viewer, and create an SDP offer to send the audio track 

to the master (raspberry pi). Once connected, a two-way audio communication to occur 

between the person with the robot and the person on the website. This will value add to the 

telepresence aspect of our project.  

Further improve to the scalability of this project can be made as well. As mentioned 

previously, a less ideal approach was made for scalability. As items were first manually 

created inside the DynamoDB table, the application was coded to only allow reading and 

getting data information from the table.  The application was also hardcoded which is not 

user-friendly. Therefore, thinking ahead on constructing an application that is user-friendly 

in the real-world context, the user’s information should be inserted and stored in the 

DynamoDB table automatically. 

7.2. CONCLUSION 

In conclusion, this project has been fruitful and fulfilling where we were able to 

encounter many first-hand experiences.  Through hands-on experience, we were able to 

develop communication, problem-solving and research skills and build teamwork. As we 

continue to pursue our interest in biomedical engineering, we hope to apply the skills and 

knowledge we have acquired from this project.



 

76 

8. BIBLIOGRAPHY  

adafruit. (n.d.). Adafruit STEMMA Speaker - Plug and Play Audio Amplifier - JST PH 2mm. 
Retrieved from adafruit: https://www.adafruit.com/product/3885 

Adam, H. (02 December, 2020). Augmented Reality. Retrieved from Investopedia: 
https://www.investopedia.com/terms/a/augmented-reality.asp 

Amazon. (2021). Kinesis Video Streams Producer Libraries. Retrieved from Amazon: 
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/producer-sdk.html 

Amazon. (n.d.). Freenove 4WD Smart Car Kit for Raspberry Pi 4 B 3 B+ B A+, Face Tracking, Line 
Tracking, Light Tracing, Obstacle Avoidance, Colorful Light, Ultrasonic Camera Servo Wireless 
RC. Retrieved from Amazon: https://www.amazon.sg/Freenove-Raspberry-Tracking-
Avoidance-Ultrasonic/dp/B07YD2LT9D 

Amazon Web Service . (n.d.). What is Amazon Rekognition? Retrieved from Amazon Web 
Service : https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html 

Amazon Web Services. (10 July, 2014). Introducing Amazon Cognito. Retrieved from Amazon 
Web Services: https://aws.amazon.com/about-aws/whats-
new/2014/07/10/introducing-amazon-cognito/ 

Amazon Web Services. (2021). GetSignalingChannelEndpoint. Retrieved from Amazon: 
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_GetSignalingChan
nelEndpoint.html 

Amazon Web Services. (2021). Kinesis Video Streams with WebRTC. Retrieved from Amazon: 
https://docs.aws.amazon.com/kinesisvideostreams-webrtc-
dg/latest/devguide/kvswebrtc-how-it-works.html#how-webrtc-components-
interwork 

Amazon Web Services. (n.d.). Amazon API Gateway pricing. Retrieved from Amazon Web 
Services: https://aws.amazon.com/api-gateway/pricing/  

Amazon Web Services. (n.d.). Amazon Kinesis Video Streams pricing. Retrieved from Amazon 
Web Services: https://aws.amazon.com/kinesis/video-streams/pricing/ 

Amazon Web Services. (n.d.). AWS CloudFormation FAQs. Retrieved from Amazon: 
https://aws.amazon.com/cloudformation/faqs/ 

Amazon Web Services. (n.d.). AWS Free Tier. Retrieved from Amazon Web Services : 
https://aws.amazon.com/free/?all-free-tier.sort-
by=item.additionalFields.SortRank&all-free-tier.sort-
order=asc&awsf.Free%20Tier%20Types=*all&awsf.Free%20Tier%20Categories=cate
gories%23compute&trk=ps_a134p000006gExDAAU&trkCampaign=acq_paid_searc
h_brand&sc_ 

Amazon Web Services. (n.d.). What is Amazon CloudFront? Retrieved from Amazon Web 
Services: 
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introduc
tion.html 

Amazon Web Services. (n.d.). What Is Amazon DynamoDB? Retrieved from Amazon Web 
Services: 
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introductio
n.html 

Azam, S. (2021). What is Vue.js, and Why is it Cool? Retrieved from linuxhint: 
https://linuxhint.com/about_vue_js/ 



BIBLIOGRAPHY 

77 

Chen, Denzel. (20 August, 2021). Tutorial.pdf. Retrieved from Github: 
https://github.com/Freenove/Freenove_4WD_Smart_Car_Kit_for_Raspberry_Pi/bl
ob/master/Tutorial.pdf 

Christie, A. A. (25 June, 2021). Choose the right AWS video service for your use case. Retrieved from 
Amazon: https://aws.amazon.com/blogs/iot/choose-the-right-aws-video-service-for-
your-use-case/ 

cloudflare. (n.d.). Why use serverless computing? | Pros and cons of serverless. Retrieved from 
cloudflare: https://www.cloudflare.com/learning/serverless/why-use-serverless/ 

developer.mozilla.org. (15 September, 2021). Taking still photos with WebRTC. Retrieved from 
developer.mozilla.org: https://developer.mozilla.org/en-
US/docs/Web/API/WebRTC_API/Taking_still_photos 

Element14. (n.d.). RPI4-MODBP-8GB. Retrieved from Element14: 
https://sg.element14.com/raspberry-pi/rpi4-modbp-8gb/raspberry-pi-4-model-b-
cortex/dp/3369503 

Epson. (n.d.). Moverio BT-40S Smart Glasses with Intelligent Touch Controller. Retrieved from 
Epson: https://epson.com/c/Moverio-BT-40S-Smart-Glasses-with-Intelligent-
Touch-Controller/p/V11H969120 

Gillis, A. S. (April, 2020). Amazon Web Services (AWS). Retrieved from SearchAWS: 
https://searchaws.techtarget.com/definition/Amazon-Web-Services 

Github. (02 November, 2021). amazon-kinesis-video-streams-webrtc-sdk-c. Retrieved from Github: 
https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-c 

github. (n.d.). kvsWebRTCClientMasterGstreamerSample.c. Retrieved from github: 
https://github.com/awslabs/amazon-kinesis-video-streams-webrtc-sdk-
c/blob/master/samples/kvsWebRTCClientMasterGstreamerSample.c 

Matador, B. (2 September, 2020). What is AWS Amplify? Retrieved from bluematador: 
https://www.bluematador.com/blog/what-is-aws-amplify 

Milazzo, L. (16 August, 2021). A production expert’s guide to frame rates and FPS. Retrieved from 
vimeo: https://vimeo.com/blog/post/fps-for-live-
streaming/#:~:text=What%20is%20the%20best%20FPS,a%20significant%20amount
%20of%20bandwidth. 

Newegg. (n.d.). Raspberry pi Camera Module Board REV 1.3 5MP Webcam Video 1080p 720p Fast 
For raspberry pi 3 starter kit. Retrieved from Newegg: 
https://www.newegg.com/global/sg-en/p/1EF-007B-00003 

Parlette, C. (18 January, 2018). Why Serverless Computing Will Be Bigger Than Containers. Retrieved 
from ParkMyCloud: https://www.parkmycloud.com/blog/serverless-computing/ 

seeedstudio. (n.d.). ReSpeaker Mic Array v2.0. Retrieved from seeedstudio: 
https://www.seeedstudio.com/ReSpeaker-Mic-Array-v2-0.html 

Serverless Stack. (n.d.). Facebook Login with Cognito using AWS Amplify. Retrieved from 
serverless-stack: https://serverless-stack.com/chapters/facebook-login-with-cognito-
using-aws-amplify.html 

SneakyHacker. (22 December, 2020). Fast Video Doorbell / Intercom on Raspberry Pi. Retrieved 
from hackster.io: https://www.hackster.io/sneaky/fast-video-doorbell-intercom-on-
raspberry-pi-63b063  

TrustRadius. (n.d.). AWS IoT Core Pricing. Retrieved from TrustRadius: 
https://www.trustradius.com/products/aws-iot-core/pricing  

Tulane University. (n.d.). What's the Difference Between AR and VR. Retrieved from Tulane 
University: https://sopa.tulane.edu/blog/whats-difference-between-ar-and-



BIBLIOGRAPHY 

78 

vr#:~:text=The%20distinctions%20between%20VR%20and,while%20VR%20is%20c
ompletely%20virtual&text=VR%20requires%20a%20headset%20device,only%20enha
nces%20a%20fictional%20reality 

zakaziko. (14 August, 2020). how to stream the video capture from WebRTC in VLC or PYTHON 
OPENCV. Retrieved from OpenCV answers : 
https://answers.opencv.org/question/233658/how-to-stream-the-video-capture-
from-webrtc-in-vlc-or-python-opencv/  

Zara, M. (25 March, 2020). Building a Raspberry Pi telepresence robot using serverless: Part 1. Retrieved 
from Amazon: https://aws.amazon.com/blogs/compute/building-a-raspberry-pi-
telepresence-robot-using-serverless-part-1/ 

Zara, M. (13 April, 2020). Building a Raspberry Pi telepresence robot using serverless: Part 2. Retrieved 
from Amazon : https://aws.amazon.com/blogs/compute/building-a-raspberry-pi-
telepresence-robot-using-serverless-part-2/ 

 

 

 


